
The FIt-SNE FlowJo Plugin 

Introduction 
t-SNE is a well known and useful method for dimensionality reduction and visualization of flow 
cytometry and single cell sequencing data. However the original implementation scaled very 
poorly for large datasets. This has been somewhat addressed by the Barnes-Hut 
implementation of t-SNE, which made t-SNE applicable to typical flow cytometric data. Still, 
downsampling was often required since Barnes-Hut t-SNE does not scale well to hundreds of 
thousands or millions of high dimensional data-points. Recently, Linderman et. al developed a 
new Fast Fourier Transform-accelerated Interpolation-based t-SNE (FIt-SNE), which further 
accelerates the computation of t-SNE. In addition, Linderman et. al introduced the option of 
calculating input similarities in high dimensions using multi-threaded approximate nearest 
neighbors instead of a typical vantage point tree implementation. Fun fact: this is done using a 
library developed by Spotify to identify and suggest songs that listeners may like based on what 
they are commonly listening to. Finally, an option of a late exaggeration was added tp allows for 
easier identification of clusters in the resulting t-SNE embeddings.  
 
The FIt-SNE algorithm has been implemented as a plugin compatible with both FlowJo and 
SeqGeq analysis programs. As a result, this plugin will produce new derived parameter(s) 
capturing the resulting low dimensional t-SNE embeddings. 

Installation 
In order to install the FIt-SNE plugin, you will need to 

1. Place the plugin jar file in your Plugins folder, and direct FlowJo or SeqGeq to that folder 
using the Diagnostics section of the preference. 

2. Make sure you have R installed and the R path is specified in the R Path field of the 
Diagnostics section of the preferences; see ​docs.flowjo.com/d2/plugins/installing-plugins/ 
for more details. 

3. Restart the (FlowJo or SeqGeq) application to pick up the new plugin. 

http://docs.flowjo.com/d2/plugins/installing-plugins/


 

Usage 
 
To run the FitSNE plugin on a population (or sample),  

1. Select the population of interest within the workspace  
2. Go to the Workspace tab and select the ​FitSNE​ option from within the Plugins dropdown 

there. Note that plugin will be unavailable (greyed out) if no population is selected. 



 
3. Select the parameters and settings that you would like to use to run the FIt-SNE 

algorithm within the resulting plugin dialog. Those settings are described further below. 



 
4. Once the plugin has finished calculating the dimensionally reduced parameters they will 

become available within the data matrix as a set of derived or analytic parameters which 
are meant to describe the variance in populations over the whole latent space of N-Dim 
parameters, from the raw data matrix 

Input parameter description 
To find out more regarding what each setting in FIt-SNE adjusts, mouse over those options 
within the plugin interface. Please note that several of those settings are rather advanced and in 
order to use those effectively, you may have to review the FIt-SNE paper to get an 
understanding of the algorithm. 

Parameter selector 
Which input parameters, such as FCS channels in FlowJo, principal components or genes or 
transcripts in SeqGeq, do you want to run the algorithm on. 

t-SNE dimensions 
You can request the algorithm to calculate 1 or 2 dimensional embedding, i.e., it will generate 1 
or 2 derived parameters; 2 by default. 



Implementation 
You can select between FIt-SNE and Barnes-Hut tSNE. FIt-SNE is the default; Barnes-Hut 
tSNE is provided only for comparison. 

Nearest neighbors 
How should one calculate the nearest neighbors that each data point (cell) is attracted to? This 
can be done either by using an approximate nearest neighbors implementation using the Spotify 
Annoy library (​https://github.com/spotify/annoy​) or using an exact nearest neighbors 
implementation with vantage point trees. If the input dimensionality (=number of selected 
parameters) is relatively small (e.g.., flow cytometry input, or a “few” principal components from 
single cell RNA seq data) then the exact implementation should be almost as fast as the 
approximate one, but for high-dimensional (~30+) inputs, the approximate nearest neighbors will 
perform significantly faster. 

Perplexity 
Perplexity is a measure for information that is defined as 2 to the power of the Shannon entropy. 
Same as in regular t-SNE, the perplexity may be viewed as a knob that sets the number of 
effective nearest neighbors that each cell is being attracted by (while also being repulsed by all 
of the neighbors). In practical terms, if you are getting a strange ‘ball’ with uniformly distributed 
points, it usually indicates that your perplexity way too high because all points want to be 
equidistant.  
If perplexity is set to a negative value then K (kernel width; number of nearest neighbors) and 
sigma (bandwidth) parameters will be used instead of perplexity. 

Max iterations 
The maximum number of iterations that the algorithm will perform. 

Stop lying at 
Is the Iteration after which the early exaggeration stops and perplexities are no longer 
exaggerated by the exaggeration factor, i.e., this value controls the length of the early 
exaggeration phase. Increasing the early exaggeration may be useful for large numbers of 
events; however, be careful not to increase both the exaggeration and exaggeration factor too 
much, or nearest neighbors calculations may tend to over-cluster. 
 
 

https://github.com/spotify/annoy


Exaggeration factor 
Exaggeration factor used to multiply the attractive forces with during the early exaggeration 
phase of the calculation. This also controls how tight natural clusters in the original space are in 
the embedded space and how much space will be between them. If you think about clustered 
data, the purpose of early exaggeration is to make it so that the cells corresponding to a cluster 
can all "find each other" despite the repulsion from so many other cells.  

Theta 
Theta controls the estimation of forces for the Barnes Hut algorithm (it is only applicable to the 
Barnes Hut implementation). Smaller values will lead to more precise (and computationally more 
expensive implementation); a value of 0 will effectively turn off Barnes Hut and fall back to the 
original “precise” t-SNE implementation. See also ​jheer.github.io/barnes-hut/​ for an explanation 
of how the choice of theta effects the algorithm. 

Late exag. coeff 
Late exaggeration coefficient used to multiply the attractive forces with during the late 
exaggeration phase, i.e., after the late exaggeration start. Late exaggeration will typically cause 
the clusters in the resulting embedded space to become tighter and better separated from one 
another, but you may start losing local structures within those clusters. 

Late exag. start 
This is the Iteration at which the late exaggeration starts and attractive forces are again 
exaggerated, this time by the late exaggeration coefficient. The default value of -1 will disable 
the late exaggeration. 

Number of trees 
Number of trees used in the Spotify Annoy library to perform approximate nearest neighbor 
search. This affects the build time and the size of the index used for nearest neighbor search; a 
larger value will give more accurate nearest neighbors, but will consume more memory and take 
more time. See ​github.com/spotify/annoy​ for more details. 

Search K 
Search K used in the Spotify Annoy library to perform approximate nearest neighbor search. A 
value of -1 will set this automatically. This also affects the nearest neighbor search 
performance; a larger value will give more accurate results, but will take longer time to return. 
See ​github.com/spotify/annoy​ for more details. 

https://jheer.github.io/barnes-hut/
https://github.com/spotify/annoy
https://github.com/spotify/annoy


Number of terms 
FIt-SNE uses an interpolation scheme to approximate the repulsive forces at each step of 
gradient descent. This parameter corresponds to the number of interpolation nodes. Increasing 
the number of nodes should increase the accuracy, but this effect will quickly saturate and the 
Runge phenomenon (​en.wikipedia.org/wiki/Runge%27s_phenomenon​) takes over because it is 
an equispaced interpolation. For this reason, it is not recommended to adjust this parameter. 
Instead, the accuracy of the approximation may be increased by changing the grid using the 
"minimum intervals" and "intervals per integer" sections. 

Minimum intervals 
The minimum number of intervals and the intervals per integer adjust the fineness of the grid 
used in the FIt-SNE interpolation scheme. The Minimum intervals describes the smallest 
number of subintervals in which to split each dimension of the t-SNE space when calculating the 
FIt-SNE. However, as the space increases in size (t-SNE typically expands to be on the order of 
-100 to 100 by -100 to 100), we need to maintain the fineness of the grid. This is where the 
Intervals per integer prevail. The number of subintervals in each dimension at any given 
iteration is the larger of (i) the minimum number of intervals, and (ii) the number of intervals per 
integer times the current size of the t-SNE grid.  
 
For example, let’s say you set the minimum number of intervals to 45 and the intervals per 
integer to 1.2. Let’s say the current t-SNE grid spans from -10 to 10 by -10 to 10, which is a grid 
of 20 times 20 integers. 20 times 1.2 = 24, which is less than 45 and therefore, the values of 45 
(minimum number of intervals) will be used to determine the number of subintervals for FIt-SNE 
interpolation. Let’s say that later, t-SNE has already expanded to -20 to 20 by -20 to 20, which is 
a grid of 40 times 40. 40 times 1.2 = 48, which is larger than 45 and therefore, the value of 48 
will be used to determine the number of subintervals for FIt-SNE interpolation. 

Intervals per integer 
The intervals per integer and the minimum number of intervals adjust the fineness of the grid 
used in the FIt-SNE interpolation scheme. The Minimum intervals describes the smallest 
number of subintervals in which to split each dimension of the t-SNE space when calculating the 
FIt-SNE. However, as the space increases in size (t-SNE typically expands to be on the order of 
-100 to 100 by -100 to 100), we need to maintain the fineness of the grid. This is where the 
Intervals per integer prevail. The number of subintervals in each dimension at any given 
iteration is the larger of (i) the minimum number of intervals, and (ii) the number of intervals per 
integer times the current size of the t-SNE grid. See also the example provided above. 

https://en.wikipedia.org/wiki/Runge%27s_phenomenon


K 
Number of nearest neighbors to control the kernel width; a value of -1 will auto set this 
parameter. Note that this parameter will be ignored unless perplexity is set to a negative value, 
i.e., the kernel width can be controlled either by perplexity, or set manually by K and sigma. 
Same as perplexity, this may be viewed as a knob that sets the number of effective nearest 
neighbors that each cell is being attracted by. 

Sigma 
The bandwidth (standard deviation for Gaussian kernel). This will be ignored unless perplexity is 
set to a negative value, i.e., the kernel width can be controlled either by perplexity, or set 
manually by K and sigma. Same as perplexity, this may be viewed as a knob that sets the 
number of effective nearest neighbors that each cell is being attracted by. 

Seed 
FIt-SNE is a stochastic algorithm and as such, slightly different results will be produced every 
time you run it unless you set seed to a positive value. The default of -1 will set the seed 
randomly. 

Run ID 
An identifier used to create the derived parameter names. The “auto” value will create names 
encoding most of the input settings, which ensures that they will be unique, but they are also 
somewhat long due to the number of all the different options provided. You may want to choose 
your own Run ID to shorten the names. 

No momentum during exaggeration 
If checked, then there will be no momentum/gains until after the early exaggeration phase is 
completed, i.e., a regular gradient descent will be used to optimize the cost function. Gradient 
descent with momentum is an optimization of a gradient descent algorithm that relies on 
exponentially decreasing weighted averages applied to older data points and thus typically 
minimizes oscillation of the gradient descent. You can read more at 
datalya.com/blog/2017/gradient-descent-with-momentum​ but this checkbox should have 
minimal effect on the results. 

Save the R script and output messages 
Would you like to save the resulting R script and output messages for debugging and 
troubleshooting purposes? We suggest that you do so. 

http://datalya.com/blog/2017/gradient-descent-with-momentum


Notes and suggestions 
Similar to regular t-SNE, this plugin will typically run well on a condensed matrix of parameters 
either from flow cytometry directly, or in the case of scRNA-seq data, on principal components. 
Large numbers of events within the population of interest will be more difficult to cluster than 
small event numbers. If necessary, the downsample platform can be used to reduce the number 
of events within a population, in an unbiased manner. 
 
You may also consider reviewing this ​distill.pub/2016/misread-tsne/​ guide to help you 
understand the different t-SNE parameters. 

Contact 
If you have any questions, concerns, or other feedback related to this plugin, please reach out 
to FlowJo technical support specialists by emailing to ​techsupport@flowjo.com​. 
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